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Week 2

Classification Models
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Overview

Daily recap quiz

Classification models vs regression models

Tree-based methods

Classification and regression trees

Random Forest
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[Daily Quiz - 15 mins]
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Discussion




Classification Models
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Two types of problems in supervised learning

Regression Problems: Continuous, numerical prediction problems e.g.
house price.

Classification Problems: Predicting a category from a pre-defined and

fixed list of categories e.g. sorting images of animals into the categories
[‘Dog’, ‘Cat’, ‘Bird’].
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Machine Learning Al
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https://www.aol.com/golden-retriever-whos-velcro-dog-203326641.html?guccounter=1
https://ebird.org/species/ostric2
https://medium.com/@manager_67691/kps-xiii-ground-rents-743612b73439
https://www.pexels.com/photo/close-up-of-rabbit-on-field-326012/
https://www.pexels.com/photo/close-up-photography-of-tiger-792381/
https://www.pexels.com/photo/dolphin-s-head-in-the-surface-162079/

Classical Artificial Intelligence
(Not machine learning)

Photo source

—» Dog

Photo source

Photo source

£orSs Syl ko o imheie iah Sl @ CONFIDENTIAL: Oxmedica Ltd. 10347756 &
OXMEDICA

amgo


https://www.zooplus.co.uk/magazine/dog/dog-nutrition/diet-of-a-golden-retriever
https://www.aol.com/golden-retriever-whos-velcro-dog-203326641.html?guccounter=1
https://ebird.org/species/ostric2
https://medium.com/@manager_67691/kps-xiii-ground-rents-743612b73439

Examples?




A primer on mathematically representing binary
and categorical features

[Aside]
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[Aside] binary and categorical features

Binary Features:

Features that can take on two values e.g. Does a student wear
glasses? It can be either ‘Yes’ or ‘N0’

These are encoded as 0Os and 1s
Categorical Features:

Features that can take on a number of predefined values from a fixed
list e.g. What is a student’s favourite colour from [‘Red’, ‘Green’, ‘Blue’]

Different ways of handling these features: Label encoding or One-hot
encoding
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How do categorical targets look mathematically....?

See whiteboard
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Classification Models
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Main types of model

1. Logistic regression (might cover if time)

2. Tree-based methods: Classification trees

3. Tree-based methods: Random Forest

4. Tree-based methods: Boosting (won’t cover)
5. Support vector machines (won’t cover)

6. Neural networks (will cover)
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https://www.google.com/url?sa=i&url=https%3A%2F%2Fen.canon-me.com%2Fview%2Fforest-preservation-future%2F&psig=AOvVaw2W-U2pu9JAHa6_CyIj-FuG&ust=1720271256973000&source=images&cd=vfe&opi=89978449&ved=0CBQQjhxqFwoTCJjhoP37j4cDFQAAAAAdAAAAABAE

A simple tree

Yes No
NON HEART
OVERWEIGHT ATTACK PRONE
No
NON HEART
EXERCISE ATTACK PRONE

REGULARLY

NON HEART HEART ATTACK
ATTACK PRONE PRONE

Source
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https://www.google.com/url?sa=i&url=https%3A%2F%2Fmnstats.morris.umn.edu%2Fmultivariatestatistics%2Fcart.html&psig=AOvVaw0IhT3gNSLY_Y_rd8LrmUjR&ust=1720271469623000&source=images&cd=vfe&opi=89978449&ved=0CBQQjhxqFwoTCIiJnuD8j4cDFQAAAAAdAAAAABAR

Example: The wages dataset

See whiteboard
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Naming different parts of the tree!

® Branch

s N ® Leaves
NON HEART
OVERWEIGHT ATTACK PRONE
Yes \
NON HEART
EXERCISE ATTACK PRONE
REGULARLY
Yes No
NON HEART HEART ATTACK
ATTACK PRONE PRONE

Source
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https://www.google.com/url?sa=i&url=https%3A%2F%2Fmnstats.morris.umn.edu%2Fmultivariatestatistics%2Fcart.html&psig=AOvVaw0IhT3gNSLY_Y_rd8LrmUjR&ust=1720271469623000&source=images&cd=vfe&opi=89978449&ved=0CBQQjhxqFwoTCIiJnuD8j4cDFQAAAAAdAAAAABAR

Getting predictions

Training Time
1. Build your tree using the training data [more on this later]
2. Work out the most common category/class at each leaf

3. The most common category is the leaf prediction

Test Time [New unseen examples]
1. Pass a new example through the tree to get to a leaf

2. Predict the class of that leaf
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EXxercise In pairs: 5 mins

Classical Artificial Intelligence Task

1.

2llaac il

Think of a classification problem that you would like to implement. Why is
this an interesting problem?

Pick 5 features that might be relevant for helping us predict the categories.

Build a hypothetical tree with different splits. What might you leaf prediction
look like
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From classical Al to machine learning
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How to algorithmically construct classification trees
Recursive binary splitting (RBS)

1. Start with no tree
2. Consider different possible splits for the first node

3. Choose the split the best is best for some metric e.g. loss or ‘information
gain’

4. Repeat steps 2-3 greedily for all future nodes

5. Stop when you reach a predefined stopping criteria or leaf has 1 training
example in it
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Recursive binary splitting (RBS)

Greedy Algorithms?
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Recursive binary splitting (RBS)

What do we mean by a metric?
[Non-trivial]

® Estimate of Positive Correctness (true positives - false positives)
® Gini impurity
® Information gain

e Cross entropy

Read https://www.datacamp.com/tutorial/decision-trees-R# for more info...
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https://www.datacamp.com/tutorial/decision-trees-R#

EXxercise In pairs: 5 mins

Pros and cons of decision trees methods?
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Strengths and weaknesses

Easy

"4 Interpretable / explainable

Very fast

X Very sensitive to examples / features

X Generally individual trees are poor predictors
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A simple extension to regression problems
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How might we extend this to regression problems?

Discussion / whiteboard
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How might we extend this to regression problems?

Work out target mean of each leaf rather than most popular class
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https://www.google.com/url?sa=i&url=https%3A%2F%2Fen.canon-me.com%2Fview%2Fforest-preservation-future%2F&psig=AOvVaw2W-U2pu9JAHa6_CyIj-FuG&ust=1720271256973000&source=images&cd=vfe&opi=89978449&ved=0CBQQjhxqFwoTCJjhoP37j4cDFQAAAAAdAAAAABAE

From individual trees...

... to whole forests

Source
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https://www.google.com/url?sa=i&url=https%3A%2F%2Fen.canon-me.com%2Fview%2Fforest-preservation-future%2F&psig=AOvVaw2W-U2pu9JAHa6_CyIj-FuG&ust=1720271256973000&source=images&cd=vfe&opi=89978449&ved=0CBQQjhxqFwoTCJjhoP37j4cDFQAAAAAdAAAAABAE

The general idea

Discussion / whiteboard

1. Artificially create B datasets from your 1 dataset
2. Pick a subset of the features for each tree
3. Train many individual trees

4. Aggregate the results with majority rule or mean average
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Questions

1. How do you make the B artificial datasets?
2. How do you pick the subset of features?

3. How much do you grow each tree?
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Strengths and limitations

\'4 Final model has lower variance than individual trees

"4 Better predictors

X Not very interpretable / explainable!

X Can take a long time to train
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1. What is the difference between regression and classification
problems?

2. What are tree-based models?

3. Explain how classification trees work

4. What makes the recursive binary splitting algorithm greedy?
5. How do you extend decision trees to regression problems?

6. What is random forest?
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