

Specialist Topic

Large Language Models

Specialist Topic: Large Language Models

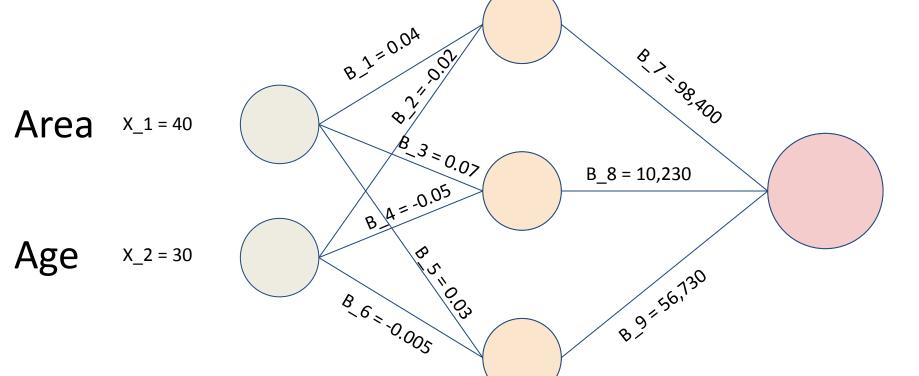
Day 1: From Neural Networks to LLMs

Day 2: LLM applications

Large Language Models: Day 1

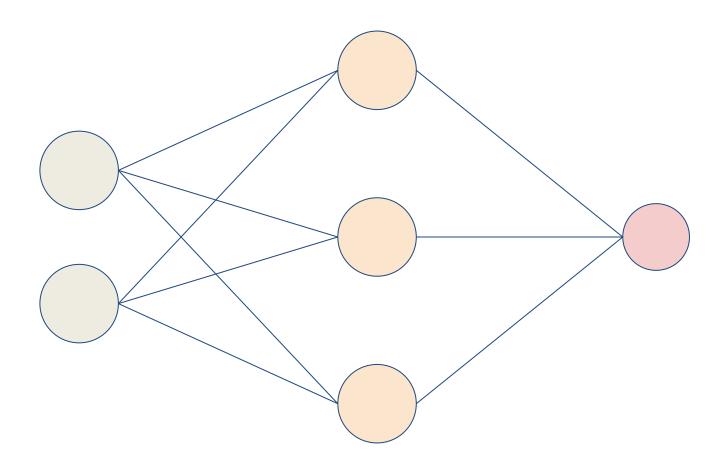
Day 1: From Neural Networks to LLMs

08:30 - 10:30	Introduction to LLMs		
	Recap on NNs		
	History of LMs		
	 Future LLMs and AGI 		
	 State-of-the-art evals 		
	 Evals and visualisations 		
	exercise		
11:00 - 11:30	How do LLMs work?		
	Finish evals		
	Technical lecture		
11:30 - 12:00	Guest Lecture: Al in medicine		
12:15 - 12:45	Limitations of SOTA LLMs		

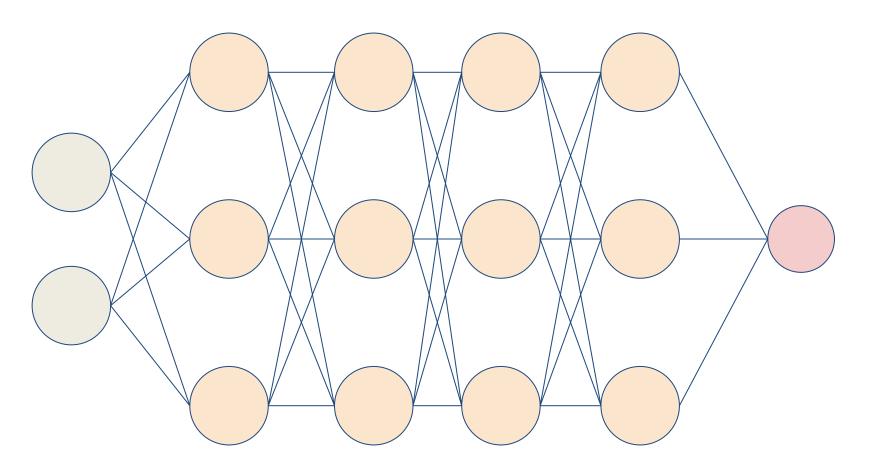


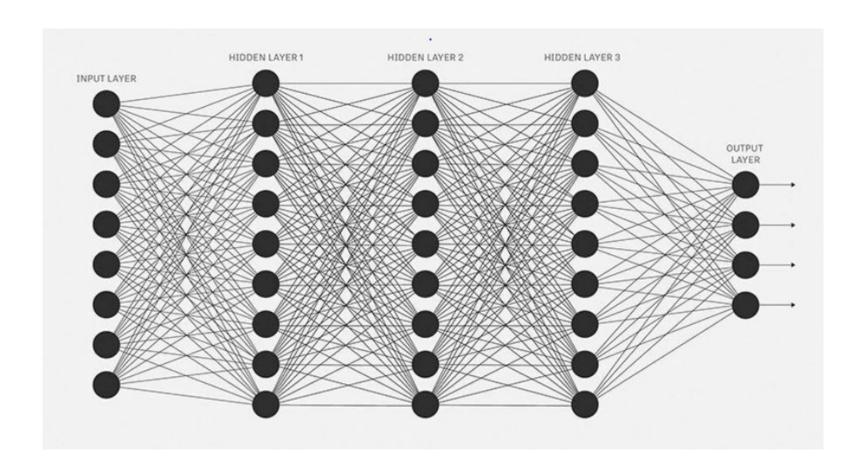
Neural Networks Recap

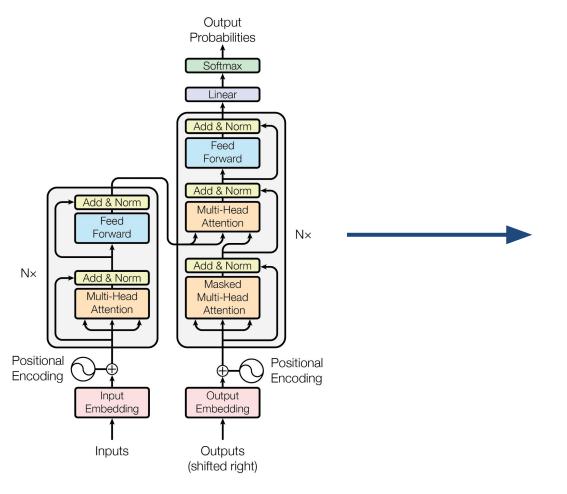
Neural Networks Task: House price prediction 2


How do we work this out?

Whiteboard

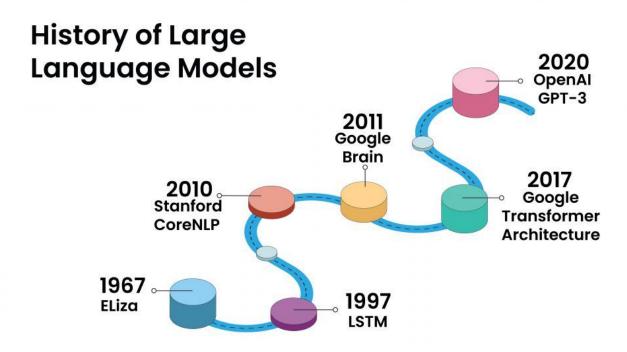

Big Neural Networks


Big Neural Networks: Connect everything


Big Neural Networks: bigger...

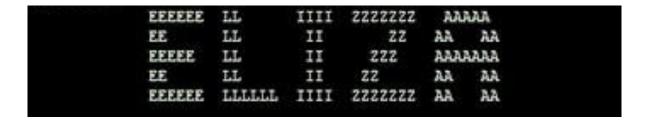
Big Neural Networks: bigger...

Gives you predicted probabilities for all possible next tokens (subwords)



A Brief History of Language Models

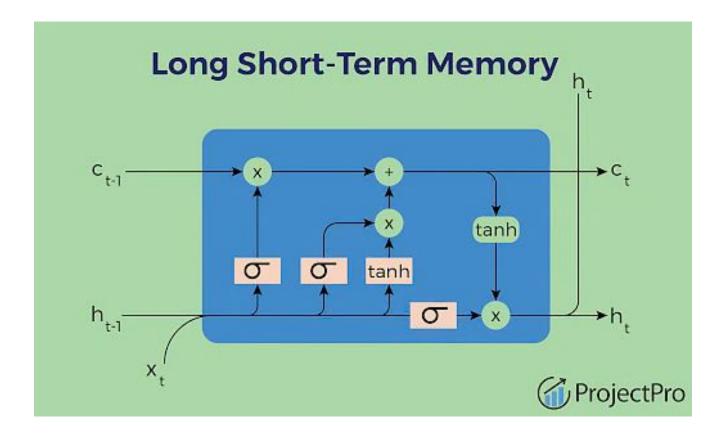
A brief history



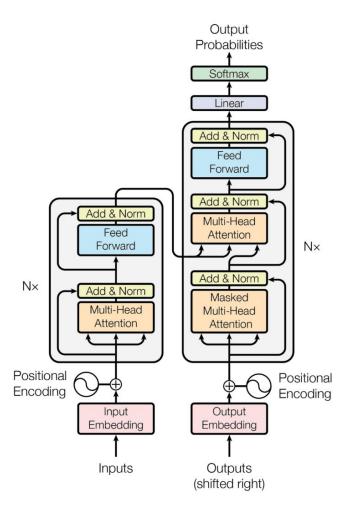
A brief history: The ELIZA model

A brief history: Statistical Models (n-gram models)

Example bigram table


Word 1\Word 2	the	а	dog	in	park	today	
the	0.0	0.0	0.1	0.0	0.1	0.0	
а	0.0	0.0	0.1	0.0	0.1	0.0	
dog	0.1	0.1	0.0	0.1	0.1	0.1	
in	0.2	0.1	0.0	0.0	0.0	0.0	
park	0.1	0.1	0.0	0.1	0.0	0.1	
today	0.05	0.0	0.0	0.1	0.0	0.0	

LSTM neural networks



مؤسسة الملك عبدالعزيز ورجاله للموهية والإيداع

The Transformer Revolution

Provided proper attribution is provided, Google hereby grants permission to reproduce the tables and figures in this paper solely for use in journalistic or scholarly works.

Attention Is All You Need

Ashish Vaswani*
Google Brain
avaswani@google.com

Noam Shazeer* Google Brain noam@google.com Niki Parmar* Google Research nikip@google.com Jakob Uszkoreit* Google Research usz@google.com

Llion Jones*
Google Research
llion@google.com

Aidan N. Gomez* †
University of Toronto
aidan@cs.toronto.edu

Łukasz Kaiser* Google Brain lukaszkaiser@google.com

Illia Polosukhin* ‡ illia.polosukhin@gmail.com

Abstract

The dominant sequence transduction models are based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The best performing models also connect the encoder and decoder through an attention

Source

The Transformer Revolution

Attention is all you need

<u>A Vaswani, N Shazeer, N Parmar, J Uszkoreit, L Jones, AN Gomez, Ł Kaiser, I Polosukhin</u> Advances in neural information processing systems, 2017 • proceedings.neurips.cc

Abstract

The dominant sequence transduction models are based on complex recurrent orconvolutional neural networks in an encoder and decoder configuration. The best performing such models also connect the encoder and decoder through an attentionm echanisms. We propose a novel, simple network architecture based solely onan attention mechanism, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superiorin quality while being more

SHOW MORE V

☆ Save 叨 Cite Cited by 124578 Related articles All 91 versions Import into BibTeX ≫

Showing the best result for this search. See all results

[PDF] neurips.cc

This is a **huge** number of citations!

<u>Source</u>

Attention Is All You Need

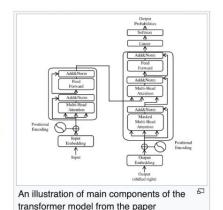
Contents hide

(Top)

Authors

References

External links


Article Talk Read Edit View history Tools

From Wikipedia, the free encyclopedia

"Attention Is All You Need" is a 2017 landmark[1][2] research paper authored by eight scientists working at Google, that introduced a new deep learning architecture known as the transformer based on attention mechanisms proposed by Bahdanau et al. in 2014. It is considered by some to be a founding paper for modern artificial intelligence, as transformers became the main architecture of large language models like those based on GPT.[3][4] At the time, the focus of the research was on improving Seg2seg techniques for machine translation, but even in their paper the authors saw the potential for other tasks like question answering and for what is now called multimodal Generative AI.[5]

The paper's title is a reference to the song "All You Need Is Love" by the Beatles. [6]

As of 2024, the paper has been cited more than 100,000 times. [7]

文A 2 languages

Text Small Standard

Standard

Width

Large

Appearance

Wide

Authors [edit]

The authors of the paper are: Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan Gomez, Lukasz Kaiser, and Illia Polosukhin. All eight authors were "equal contributors" to the paper; the listed order was randomized. The Wired article highlights the group's diversity:[6]

Six of the eight authors were born outside the United States; the other two are children of two green-card-carrying Germans who were temporarily in California and a first-generation American whose family had fled persecution, respectively.

By 2023, all eight authors had left Google and founded their own AI start-ups (except Łukasz Kaiser, who joined OpenAI). [6][7]

Source

And now... **HUGE** transformer models

GPT4 Model Estimates

Training Size

of Book shelves for 13T tokens

650 kms

Long line of Library Shelves

100000 tokens per Book 100 Books per shelf 2 Shelves per meter

Compute Size

Compute time for 2.15 e25 FLOPs

7 million years

On mid-size Laptop (100GFLOPs)

100GLOPs per second

Model Size

Size of Excel Sheet for 1.8T params

30,000

Football Fields sized Excel Sheet

1x1 cm per Excel cell 100 x 60 meters Field Size

Source: https://the-decoder.com/gpt-4-architecture-datasets-costs-and-more-leaked

The Future of LLMs and AGI

Near-Term Future

Multimodality

2 Agents

3 Usability

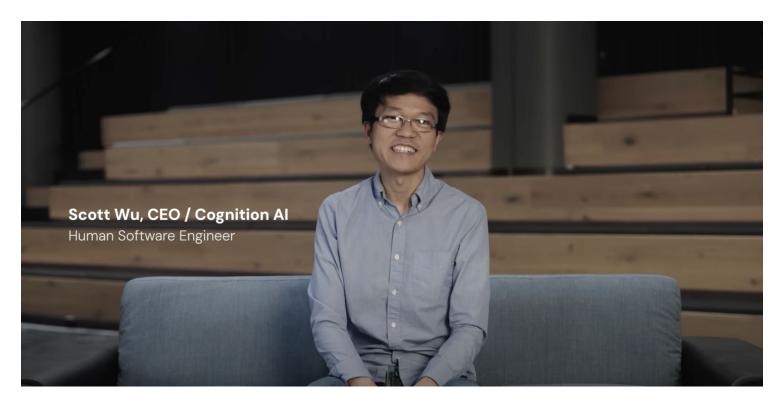
Source

Near-Term Future: Multimodality

What is the football club shown in this image?

The football club shown in the image is Newcastle United. This can be identified by the black and white striped kit, which is characteristic of Newcastle United's home jersey.

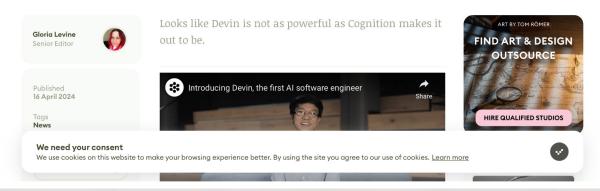
The player in the image appears to be Alexander Isak, a forward for Newcastle United. Alexander Isak is considered a talented player and has made significant contributions to the team. His performances have been well-regarded, and he is seen as one of the promising players in the squad.


Near-Term Future: Agents

- A system that can <u>take actions</u> on a user's behalf
- ChatGPT is a good knowledge source but bad at taking actions
- Model's need to improve to get good at multi-step, agents work

Example agent: **Devin**

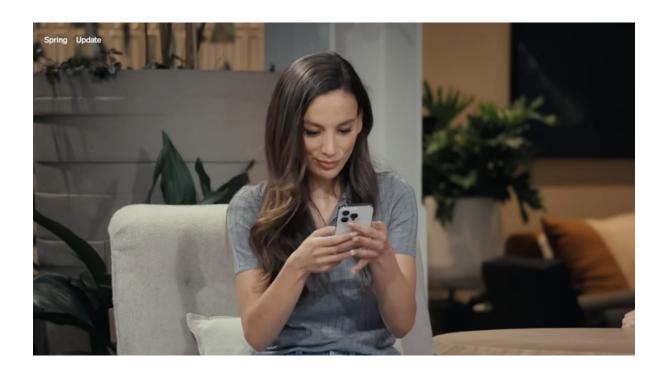
https://www.youtube.com/watch?v=fjHtjT7GO1c



Near-Term Future: Agents

But they're not that good yet...

"First AI Software Engineer" Creators Are Accused of Lying


Near-Term Future: Usability

Current models aren't very usable!

You have to type in text... very slow and painful!

Near-Term Future: Usability

https://www.youtube.com/watch?v=c2DFg53Zhvw

Near-Term Future: Good but far from great...

https://www.youtube.com/watch?v= nSmkyDNulk

Long-term future: Some definitions

Artificial General Intelligence (AGI): No agreed definition but an intelligence that is roughly human-level across the board.

Sam Altman (OpenAl CEO) → here

Artificial Superintelligence (ASI): An intelligence which is far beyond human level. Far harder to achieve.

What is Al?

ANI vs. AGI vs. ASI

Artificial narrow intelligence (ANI)

Designed to perform specific tasks

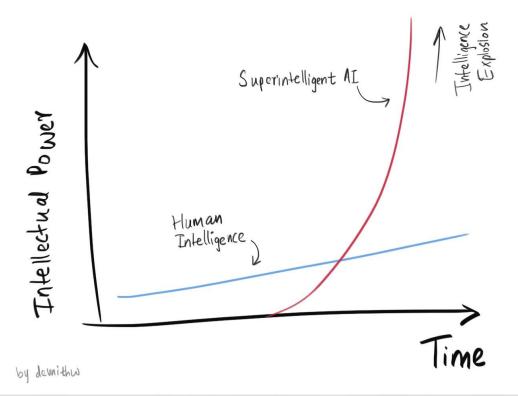
Artificial general intelligence (AGI)

Can behave in a humanlike way across all tasks

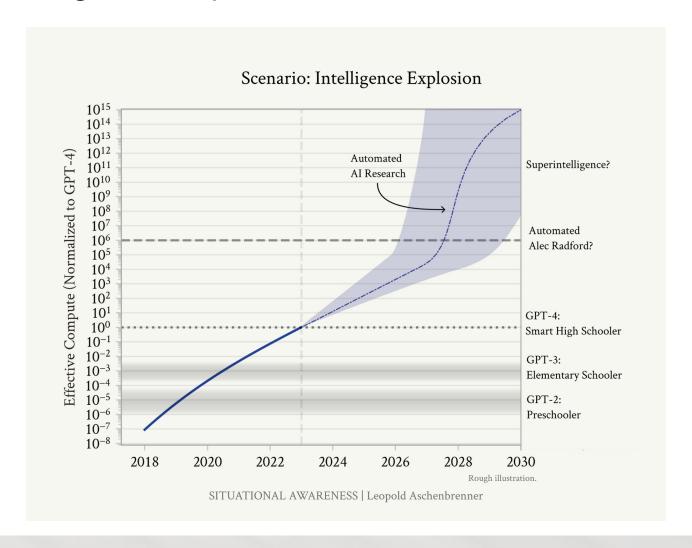
Artificial super intelligence (ASI)

Smarter than humans the stuff of sci-fi

_zapier



The intelligence explosion?



The intelligence explosion?

Sir Demis Hassabis' thoughts...

https://www.youtube.com/watch?v=BGxiufHVVd0

Dario Amodei's thoughts...

https://www.youtube.com/watch?v=wo4o09IKAQQ

What might be missing from the story of an intelligence explosion?

Discussion

State-of-the-art Evaluations

What are Language Model Evaluations?

Discussion

The Turing Test

Link to original source

Link to original source

Link to original source

Five English proverbs

- 1. Many hands make light work
- 2. Strike while the iron is hot
- 3. The grass is always greener
- 4. Don't judge a book by its cover
- 5. An apple a day keeps the doctor away

The top five English proverbs:

- Actions speak louder than words.
- A silent cat catches no mice.
- A picture is worth a thousand words.
- When in Rome, do as the Romans do.
- 5. The stone that rolls grows no moss.

Modern Evals: What makes a good eval?

Discussion

Modern Evals: Things to consider

1 Difficulty

2 Generalisability

Memorisation risk...

Superhuman abilities...?

Modern Evals: Lessons from the trenches

Preprint. Under review.

Lessons from the Trenches on Reproducible Evaluation of Language Models

Stella Biderman^{1*}, Hailey Schoelkopf^{1*}, Lintang Sutawika^{1*}, Leo Gao¹, Jonathan Tow², Baber Abbasi¹, Alham Fikri Aji³, Pawan Sasanka Ammanamanchi⁴, Sidney Black¹, Jordan Clive⁵, Anthony DiPofi¹, Julen Etxaniz⁶, Benjamin Fattori¹, Jessica Zosa Forde⁷, Charles Foster⁸, Jeffrey Hsu⁹, Mimansa Jaiswal¹⁰, Wilson Y. Lee¹¹, Haonan Li^{3,12}, Charles Lovering¹³, Niklas Muennighoff¹⁴, Ellie Pavlick⁷, Jason Phang^{1,15}, Aviya Skowron¹, Samson Tan¹⁶, Xiangru Tang¹⁷, Kevin A. Wang⁷, Genta Indra Winata¹⁸, François Yvon¹⁹, and Andy Zou²⁰

¹Eleuther AI, ²Stability AI, ³MBZUAI, ⁴IIIT Hyderabad, ⁵Chattermill AI, ⁶HiTZ Center - Ixa, UPV/EHU, ⁷Brown University, ⁸Finetune, ⁹Ivy Natal, ¹⁰University of Michigan, ¹¹HubSpot, ¹²Libr AI, ¹³Kensho, ¹⁴Contextual AI, ¹⁵New York University, ¹⁶Amazon, ¹⁷Yale University, ¹⁸HKUST, ¹⁹Sorbonne University, ²⁰CMU

*Equal Contribution

Abstract

https://arxiv.org/pdf/2405.14782

Modern Evals / Benchmarks

Task in pairs: 10 mins to research this eval/benchmark

- What does this eval test?
- Give an example problem how hard is it?
- Overall is this benchmark good?

GSM8K	MGSM		
MMLU	ммми		
ВВН	MathVista		
ARC / The ARC Challenge	WMDP Benchmark		
HumanEval (Code)	GPQA		

Individual Task: 10 minutes to read this paper

LINGOLY: A Benchmark of Olympiad-Level Linguistic Reasoning Puzzles in Low-Resource and Extinct Languages

Andrew Bean^{1*} Simi Hellsten^{1,2}
Harry Mayne¹ Jabez Magomere¹ Ethan A. Chi³ Ryan Chi³
Scott A. Hale^{1,4} Hannah Rose Kirk¹

¹University of Oxford ²United Kingdom Linguistics Olympiad ³Stanford University ⁴Meedan

Abstract

In this paper, we present the LINGOLY benchmark, a novel benchmark for advanced reasoning abilities in large language models. Using challenging Linguistic Olympiad puzzles, we evaluate (i) capabilities for in-context identification and

https://arxiv.org/pdf/2406.06196

Evals and Visualisation Task

Evals Challenge: 30 minutes

- Most modern evals are becoming memorised by the language models and are thus poor tests of true ability.
- Your task is to design your own eval. It can be really specific (only testing a certain type of behaviour) or really general but it should, in some way, test language model 'intelligence'
- You need to design 7-10 questions for your eval and work out how to score the model responses.
- Benchmark 5 different language models on this benchmark and present the results in a table (remember how to make nice visualisations!)

