Week 1 Tutorial Overview

Admin

- See the tutorial slides at https://www.harrymayne.com/oxford → I will be uploading everything through this page. The tutorial slides introduce the TA sessions, set expectations and contain the deadlines. TA sessions will be deepdives into theory + extension questions.
- In general, weekly assignments should be uploaded to <u>Canvas</u> by Wednesday 11:59PM the week after the TA session.

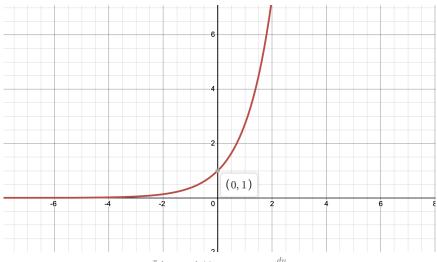
Overview view of course and summative

- Course topics
 - 1. Introduction to analytical statistics
 - 2. Sampling and statistical significance
 - 3. Linear regression I
 - 4. Linear regression II
 - 5. Logistic regression
 - 6. Multi-level modelling
 - 7. Topics
 - 8. Topics
- · Summative discussion
 - A maximum 5,000 word project report
 - What are important skills to do a good job at this?
 - Friday of Week 4, Michaelmas term deadline for summative ideas.
 - This summative is the most similar to the overall thesis so a good chance to get that kind of writing experience. IMO the biggest gap MSc students have is being overconfident in their writing abilities (!)
 - How important are coding skills? Discussion.

Key points from this week's lecture

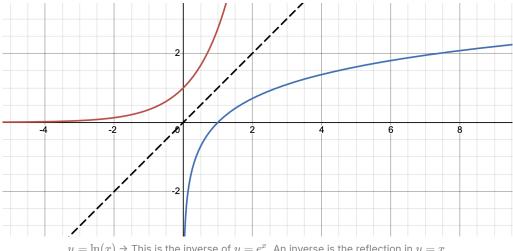
- · Introduction to statistics
- Population statistics vs sample statistics
- Descriptive statistics (or EDA) and inferential statistics. Critically inferential statistics are drawing conclusions about a population based on a sample, i.e. **inference** from the sample to the population. Adam will drive the point hard that it your summative must be inferential statistics.
- How does inferential statistics work? Hypotheses and testing them.

Week 1 Tutorial Overview


• What is machine learning? How is it different?

Course maths refresher

• This course assumes nothing other above GCSE maths as a starting point (high-school). Things can look complex but nothing is too bad.


Things you should revise if you're not comfortable with them:

- Basic algebra
- Sums and products of the types: $\sum_{i=1}^n x_i$ and $\prod_{i=1}^n x_i$
- Functions e.g. $f(x) = a + bx^2$
- Simple differentiation e.g. $f^{\prime}(x)=2bx$
- Indices: x^2
- Basic probability (e.g. discrete random variables). $p(X=6)=rac{1}{6}$
- Exponentials, $f(x)=a^x$ for $a>0, a
 eq 1
 ightarrow y=e^x$

 $y=e^x$ is special because $y=rac{dy}{dx}$...etc.

• Logarithms as the inverse of exponentials, especially the $\ln(x)$ function. Logarithm laws e.g. $\log(ab) = \log(a) + \log(b)$ and $\log(a^k) = k \log(a)$

 $y = \ln(x) \rightarrow$ This is the inverse of $y = e^x$. An inverse is the reflection in y = x

Resources basic maths recap

- The Fox textbook is **bad for this** → no nice maths appendix
- · Wooldridge econometrics is a great textbook. MATH REFRESHER A, Basic Mathematical Tools has basically everything you need and is only ~pages. See a PDF download here.
- UK A-level textbooks → PDFs will be online.
- Loads of online resources for basic maths recaps

What the assignments look like

See the first assignment at https://www.harrymayne.com/oxford

Intro to key terms (if we get time...)

An intro to some key terms in this course. A lot of this stuff will be covered in Adam's lecture next week + we'll cover in the next TA session (no need to revise this stuff this week)

[A lot of this is in MATH REFRESHER B and MATH REFRESHER C in Wooldridge if you want to get ahead]

- Random variables (discrete vs continuous random variables). A random variables is just an object that can take different values based on randomness. i.e. a probability distribution over the possible values it can take. Probabilities must sum to 1. $\sum_{i=1}^n p(X=x_i)=1$
- We test to distinguish different variables with $Y, X, X_1, X_2, ..., X_k$. Note why this is confusing given we also use subscript to denote the individual: $X_{1,i}$
- ullet Expected value and variance of random variables e.g. outcome of a dice: E[X] and

$$Var(X) = E[(X - \mu)^2]$$

Week 1 Tutorial Overview 3

$$=E[X^2 - 2XE[X] + E[X]^2] \ = E[X^2] - 2E[X]E[X] + E[X]^2 \ = E[X^2] - E[X]^2$$

- Population level statistics (capital letters). X, Population mean $E[X]=\mu$, Population variance $Var(X)=\sigma^2$. Note can be μ_X and σ_X^2
- Sample level statistics (lower case letters) x_i is a specific instance of the random variable X. x_i where i=1,...,n. $x_i\bar{x}$ and s^2 . Or we can represent these as our estimates of the population statistics $\hat{\mu}$ and $\hat{\sigma}^2$
- Parameters usually gives by lower case greek letters e.g. α, β, γ
- Estimated parameters given by hats e.g. $\hat{\alpha}, \hat{\beta}, \hat{\gamma}$
- What is a distribution? $X \sim D(\mu, \sigma^2)$ e.g. the normal distribution $X \sim N(\mu, \sigma^2)$

Week 1 Tutorial Overview 4